NAVY SEABORNE MATERIALS OPPORTUNITIES FOR STRUCTURAL AMORPHOUS METALS (SAMs)

Structural Amorphous Metals (SAM) Pre-Proposal Conference

June 6, 2000, Arlington, VA

Dr. William T. Messick
Naval Surface Warfare Center
Carderock Division Code 0115
301-227-4811
MessickWT@nswccd.navy.mil

Outline

- SAM Material Properties for Compelling Advances
- Navy Ship Environment
- Future Application Opportunities
- Summary

SAM Material Properties For Compelling Advances

- Ferrous Alloys with High Corrosion Resistance
 - Estimated Cost of Corrosion to Navy is \$ 2 B annually
 - Numerous Bulk Material Replacements or Coatings
- Ship & Submarine Hull Materials
- 100 % Increase in Yield Strength of Today's Hull Materials w/ 100 % Increase in Dynamic Fracture Toughness
 - 50 % Increase in Modulus of Elasticity
 - Nonferromagnetic Behavior
 - No Crevice Corrosion for Life of Ship
- 100 % Increase in Stress Corrosion Resistance at Strength Level
- 50 % Reduction in Cost of Today's Superaustenitic Stainless Steels

Navy Ship Platforms Environment

- Seawater Fully Submerged and Air/sea Interfaces
- · Threats:
 - Underwater Explosions (UNDEX)
 - Blast and Fragments

Affordable Materials Solutions

AFFORDABILITY Is Presently and Will Continue to Be a Major Consideration for Materials in Ships P Reduced Total Ownership Cost (TOC)

- Low <u>Fabricated</u> Cost (Constituent Materials, Manufacturing, Fabrication/assembly)
- Low <u>Development</u>, <u>Design</u> and <u>Validation</u> Costs (Including Shorter Time Cycles)
- Low Maintenance Costs (Including Manpower Needs)
- Low <u>Disposal</u> Costs With Environmental Compliance

Future Navy Operations In The Littoral

Reduced Surface Ship Multispectral Signatures

Marine Corps Assault Vehicles with Reduced Magnetic Signatures & Increased Protection Systems

Hardness Against Underwater Explosions (UNDEX), Air Blast and Fragments

Reduced Submarine and UUV Magnetic and Acoustic Signatures

Higher Payload Fractions

Steels for Naval Construction

Future Application Opportunities

- Nonmagnetic Double Hull Construction Concept For Navy Surface Combatant
- Nonmagnetic Submarine Hulls
- Protection Plating Systems (Magazines, Control Centers, Propulsion & Power Centers)
- Corrosion and Wear Resistant Coatings for Machinery Components
- Stiff, Lightweight Structural Panels (Foams, Lattices, etc.) to Reduce Weight, Particularly Topside on Surface Combatants and Aircraft Carriers
- High Strength SCC Resistant Fasteners

Nonmagnetic Double Hull Construction Concept For Navy Surface Combatant

High Corrosion Resistance for Low TOC

Nonmagnetic Hull material **P** Reduced Magnetic Signature

Inspection Techniques

Increased Damping for Acoustic Signature Reduction Joining Technologies to Reduce Fumes and Distortions

Increased Strength and Toughness
Nonmagnetic SAM Material
Increased Resistance to Underwater
Explosions

Surface Ship Nonmagnetic Hull Materials

Present Materials of Interest:

Superaustenitics AL6XN & Nitronic 50

Thicknesses up to 0.75 Inches

Issues With Current Materials

Cost (\$ 3.00 - \$ 5.00 /LB)

Crevice Corrosion Resistance in Seawater/Marine Environment

Environmentally Acceptable Coatings

Low Strength Level (50 ksi Yield Strength)

Weldability - Distortions, Ferritic Content, Fumes, Microsegregation

Surface Ship Nonmagnetic Hull Materials

New Materials Fabrication Considerations

- Plate Sizes:
 - ~ 8 Feet Wide
 - If Heat Treating, Less Than ~ 50 Ft Long
 - Plate Thicknesses Greater Than .375" (Current SS up To 0.75 inches)
- Joining Technologies:
 - Preserve Base Plate Properties in the Joint
 - Low Cost (No Preheat, Cooling Rate Insensitive, Resistance to Hydrogen Cracking)
 - Low Distortion, Environmentally Compliant
 - Shipyard Usage Issues: T Stiffeners, Portability, Worker-friendly Etc.

Future Application Opportunities

- Nonmagnetic Double Hull Construction Concept For Navy Surface Combatant
- Nonmagnetic Submarine Hulls
- Protection Plating Systems (Magazines, Control Centers, Propulsion & Power Centers)
- Corrosion and Wear Resistant Coatings for Machinery Components
- Stiff, Lightweight Structural Panels (Foams, Lattices, etc.) to Reduce Weight, Particularly Topside on Surface Combatants and Aircraft Carriers
- High Strength SCC Resistant Fasteners

"Coupon-To-Ship Capability"

Present Ship Development

CARDEROCK TEST POND

UTF ABERDEEN TEST CENTER

AT - SEA SHOCK TRIALS

Physics-Based Material and Structural Modeling & Simulation Capability

Eliminate Costly
Subscale Tests

COUPON TESTING

Shorter Development Time / Lower Costs

Less Environmental Impact

More Efficient Designs

Summary

- Ferrous Alloys with High Corrosion Resistance
 - Estimated Cost of Corrosion to Navy is \$ 2 B annually
 - Numerous Bulk Material Replacements or Coatings
- Ship & Submarine Hull Materials
- 100 % Increase in Yield Strength of Today's Hull Materials w/ 100 % Increase in Dynamic Fracture Toughness
 - 50 % Increase in Modulus of Elasticity
 - Nonferromagnetic Behavior
 - No Crevice Corrosion for Life of Ship
- 100 % Increase in Stress Corrosion Resistance at Strength Level
- 50 % Reduction in Cost of Today's Superaustenitic Stainless Steels